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Body-part specificity for learning of
multiple prior distributions in human
coincidence timing
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During timing tasks, the brain learns the statistical distribution of target intervals and integrates this
prior knowledge with sensory inputs to optimise task performance. Daily events can have different
temporal statistics (e.g., fastball/slowball in baseball batting), making it important to learn and retain
multiple priors. However, the rules governing this process are not yet understood. Here, we
demonstrate that the learning of multiple prior distributions in a coincidence timing task is
characterised by body-part specificity. In our experiments, two prior distributions (short and long
intervals) were imposed on participants. When using only one body part for timing responses,
regardless of the priors, participants learned a single prior by generalising over the two distributions.
However, when the two priors were assigned to different body parts, participants concurrently learned
the two independent priors. Moreover, body-part specific prior acquisition was faster when the priors
were assigned to anatomically distant body parts (e.g., hand/foot) than when they were assigned to
close body parts (e.g., index/middle fingers). This suggests that the body-part specific learning of
priors is organised according to somatotopy.

Sensory signals are inherently variable, but Bayesian estimation1,2 can
minimise the impact of sensory noise in sensorimotor tasks (e.g., baseball
batting in daily tasks). Bayesian estimation involves learning the statistical
distribution of a target (e.g., ball speed) and integrating this prior with
sensory signals. Psychophysical studies have shown that individuals behave
as predicted by theBayesian estimationmodel in various sensorimotor tasks
such as reaching1, forcematching3, and timing4,5. Inmost previous studies, a
single prior distributionwas imposed on the participants within certain task
sessions. In daily tasks, however, multiple events occur (e.g., fastball and
slowball), and each event can have its own unique statistics. Successful
Bayesian estimation in real environments relies on the ability to learn
multiple prior distributions.

Recently, Roach et al.6 demonstrated that when exposed to two dif-
ferent prior distributions (short and long durations) during a timing task,
participants first learned a single prior distribution by generalising over
the two distributions (‘generalisation’). Then, after approximately 1000
trials, they eventually learned the two independent priors. Moreover,
Roach et al. showed that when the two priors were assigned to two dif-
ferent types of motor responses (keypress/vocalisation), participants
concurrently learned the two independent priors (‘motor specificity’)

within 140 trials. Roach et al. proposed the supplementary motor area
(SMA) as a possible neural basis formotor specificity since neurons in the
SMA exhibit both time-interval tuning7 and action selectivity8. A more
recent study onmonkeys found that neurons in the dorsal frontal regions,
including the SMA (pre-SMA and SMA proper), exhibited activity con-
sistent with their Bayesian timing behaviour9, supporting the possibility of
the proposal.

In the current study,wehypothesised thatwhen twoprior distributions
are assigned to two different body parts to generate timing responses, par-
ticipants may concurrently learn two independent prior distributions, even
though the type of motor responses is identical (keypress). This hypothesis
has a possible neurophysiological basis—the SMA, which is referred to as a
possible neural basis of motor specificity6, also has somatotopic (body-part
specific) activity corresponding to the motor outputs10,11. In addition, psy-
chophysical studies suggest that the brain hasmultiple timers, each ofwhich
is associatedwith differentmotor effectors (i.e., body parts)12. The body-part
specific brain structure and/or function may enable individuals to con-
currently learnmultiple prior distributions. To test the hypothesis for ‘body-
part specificity’, we conducted psychophysical experiments using a coin-
cidence timing task.
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Results
Forty individuals participated in Experiments 1–5 (eight participants per
experiment; no overlap among the experiments; for details, see Supple-
mentary Table 1). They performed coincidence timing tasks (Fig. 1a) in
which three sequential visual stimuli (S1→ S2→ S3) were presented on the
right or left of a fixation point (upper or lower in Exp. 5). The time interval
(TS) between S1 and S2 was equal to that between S2 and S3 in each trial.
Based on the TS from S1 to S2, participants attempted to press a key to
coincide with the onset of S3. TS was randomly sampled from a short
(424–988ms; mean [μprior] = 706ms) or long (1129–1694 ms;
μprior = 1412ms) prior distribution (Fig. 1b). Short and long priors were
assigned to the right or left stimuli (Fig. 1c) (upper or lower in Exp. 5). Each
participant completed 640 trials of the coincidence timing task (320 trials
per prior). The time interval between the onset of S2 and response (TR) (Fig.
1a) was used for the analyses.

Theoretical predictions
Figure 2a, b shows the theoretical predictions for �TR (meanTR among trials)
as a function ofTS.WhenBayesian estimation operates, �TR should be biased
to themean of the prior distribution (μprior). In addition, including the effect
of scalar variability13,14 (i.e., greater sensory variability under longer TS), the
Bayesian estimationmodel is expressed as a nonlinear equation (see Eq. 4 in
Theoretical Predictions in Methods). According to Eq. 4, the �TR × TS
functions exhibit curves with gentler gradients in the longer TS because �TR
should be biased to the mean of the prior more strongly for longer TS with
greater sensory variability.

This model predicts the experimental results as follows. If participants
learned a generalised single prior, the curves for the short and long priors
shouldoverlap (Fig. 2a) because �TR shouldbebiased to the single generalised
mean of the two priors. In contrast, if participants concurrently learned the

short and long priors, two independent curves should appear (Fig. 2b)
because �TR should be biased to the respective means of the two priors.

Many earlier studies5,15–17 have used the linearmodels such as Eq. 2 that
did not include the effect of scalar variability, which nonetheless well fitted
with the experimental results. However, we selected the nonlinear model of
Eq. 4 based on the results of preliminary experiments (for details, see
Supplementary Methods, Supplementary Results, and Supplementary Fig.
1). In Preliminary Experiment I (Pre-Exp. I, Fig. 2c), participants (n = 8)
were presented with a single wide prior distribution created by combining
the short and long priors. In Preliminary Experiment II (Pre-Exp. II, Fig.
2d), participants (n = 8) were presented with the short prior during half of
the sessions and with the long prior during the other half. The results were
consistent with the theoretical predictions using the nonlinear model of
Eq. 4, which was especially evident in Preliminary Experiment I (for details,
see Analyses in Supplementary Methods) using a wider range of the prior
distribution than those used in previous studies5,15–17.

To evaluate how participants learned the two priors, we calculated �TR
at TS = 1059ms (grand mean of the two priors, Μpriors) on fitted curves
[�TRðMpriorsÞ, Fig. 3a]. If participants learned a single generalised prior, there
should be no difference in �TRðMpriorsÞ between the two priors. However, if
participants concurrently learned the two independent priors, then
�TRðMpriorsÞ should be greater for the long prior than for the short prior.
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Fig. 1 | Stimuli and task. aThree sequential stimuli (S1→ S2→ S3) were presented
on the right or left side of the fixation point. The stimulus time interval (TS) between
S1 and S2 and that between S2 and S3 were identical in each trial. Based on the TS
from S1 to S2, participants attempted to press a key to coincide with the onset of S3.
The time interval from the onset of S2 to that of the response was measured as the
response time interval (TR). b TS was randomly sampled from one of two prior
distributions: the short (424, 565, 706, 847, and 988 ms) or long (1129, 1271, 1412,
1553, and 1694 ms) prior. c The short and long priors were assigned to the right or
left stimuli.
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Fig. 2 | Theoretical predictions. The predictions based on the Bayesian estimation
model including the effect of scalar variability (Eq. 4): the mean response time
intervals among trials (�TR) as a function of stimulus time interval (TS) in the case that
participants learned a single generalised prior (a) and in the case that participants
concurrently learned the short and long priors (b). In this model, the priors were
assumed to have aGaussian distribution, althoughwe used uniformdistributions for
the priors in the current experiments (Fig. 1b), based on previous studies6,15–17,40. The
results of Preliminary Experiments I (c) and II (d) to verify the theoretical predic-
tions. In Preliminary Experiment I, participants were presented with a single wide
prior distribution made by combining the short and long priors. In Preliminary
Experiment II, participants were presented with only one of the two priors during
half of the sessions, and another prior during the other half. Each graph shows �TR

values across participants as a function of TS, which were calculated using data in the
last quarter of trials for each prior. The dot markers represent the �TR values of each
participant, the plus markers represent the mean �TR values across participants, and
the lines represent the curves fitted to the mean �TR values according to the Bayesian
estimation model (Eq. 4).
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In theory, the mean of the acquired prior (μ̂priorÞ can be inferred from
the point that the �TR ×TS curve intersects the unity line (Fig. 3b). Inpractice,
however, the estimationof this intersectionwashighly sensitive tovariability
in individuals’ response patterns (for details, see Analyses in Methods).
Therefore, we calculated the μ̂prior values using the curvesfitted to the grand-
averaged �TR values (i.e., means across participants), in which the indivi-

duals’ idiosyncratic responses were cancelled through averaging. Notably,
the μ̂prior valueswere accounted for by �TRðMpriorsÞ values across participants
(R2 = 0.91, for details, see Eq. 5 and Supplementary Fig. 2).

To facilitate comparisons with earlier studies15–17, we also evaluated
whether participants concurrently learned the short and long priors using
the regression index (1− slope), which was based on the linear model of
Eq. 2. If participants concurrently learned the two priors, the regression
indices should be larger than zero (i.e., slope < 1) for both priors, and the
index should be greater for the long prior than for the short prior. We
verified this using the nonparametric Wilcoxon signed-rank test because
the normality for the regression index was rejected (for details, see Ana-
lyses in Methods).

Experiment 1: timing using a single body part (index finger)
Participants (n = 8) performed the coincidence timing task using only the
dominant index finger, regardless of the stimulus locations (i.e., priors)
(Fig. 4).

Figure 4a shows �TR values across participants as a function of TS for
trials 1–160 and trials 481–640 (i.e., trials 1–80 and trials 241–320per prior).
�TR × TS curves for the short and long priors overlapped in both trial bins.
Figure 4b shows �TRðMpriorsÞ values across participants in each successive
160 trial bins (80 trial bins/prior). No significant differences between the
priors were found (pscor ≥ 0.27, ts(7) ≤ 1.35, Cohen’s ds ≤ 0.48, paired t-test
withHolm correction), indicating that participants learned a single prior by
generalising over the two distributions. This inference is supported by the
μ̂prior values (Fig. 4c), which did not differ systematically between the short
and long priors.
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Fig. 3 | Evaluations of how participants learned the two priors. �TRðMpriorsÞ: �TR at
TS = 1059 ms (i.e., grand mean over the two priors,Μpriors) on the fitted curves (a).
μ̂prior: mean of the acquired prior, which can be inferred from the point that the �TR ×
TS curve intersects the unity line (b). �TRðMpriorsÞ values were calculated for each
participant, whereas the μ̂prior values were calculated using the grand-averaged �TR

values (means across participants). The �TRðMpriorsÞ values linearly correlated with
the μ̂prior values (see Eq. 5 and Supplementary Fig. 2). If participants learned a single
generalised prior, there should be no difference in �TRðMpriorsÞ and μ̂prior between the
two priors. However, if participants concurrently learned the two independent
priors, �TRðMpriorsÞ and μ̂prior should be greater for the long prior than for the
short prior.
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Fig. 4 | Results of Experiment 1. Participants (n = 8) performed the coincidence
timing task using only the dominant index finger regardless of the priors. �TR values
across participants as a function of TS for trials 1–160 and 481–640 (a). The
representations of the markers and lines are the same as those in Fig. 2c, d.
�TRðMpriorsÞ values across participants (box plots) for the short and long priors,
calculated per 160 trials (80 trials/prior) (b). The centre line and plus marker in each
box represent the median andmean across participants, respectively. The upper and
lower limits of each box represent the third and first quartiles (Q3 and Q1),

respectively. The upper and lower whiskers indicate the maximum and minimum
values within Q3+ 1.5 × IOR (interquartile range) andQ1 – 1.5 × IOR, respectively.
The left and right ends of each grey line indicate individual values for the short and
long priors, respectively. μ̂prior values inferred using the grand-averaged �TR values
for the short and long priors, calculated per 160 trials (c). Regression indices across
participants (box plots) for the short and long priors, calculated per 160 trials (d), in
which the asterisk alongside the lower limit of each box denote that the regression
index was significantly greater than zero. * pcor < 0.05.
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Figure 4d shows regression indices across participants, which also did
not indicate concurrent learning of the two independent priors. The indices
were not significantly greater than zero in all trial bins for the short prior
(pscor ≥ 0.74, Wilcoxon signed-rank test with Holm correction), although
they were significantly greater than zero for the long prior (pscor = 0.031),
and the difference between the long and short priors remained significant in
all trial bins (pscor = 0.016).

Experiment 2: timing using two body parts (index vs middle
fingers)
Next, participants (n = 8) performed the coincidence timing task selectively
using either the index or middle fingers of the dominant hand according to
the stimulus locations (i.e., priors) (Fig. 5).

As shown in Fig. 5a, �TR × TS curves for the two priors overlapped in
trials 1–160 but diverged in trials 481–640. In trials 1–160, �TRðMpriorsÞ
values showed no difference between the two priors (pcor = 0.26, t(7) = 0.68,
d = 0.24, paired t-test withHolm correction) (Fig. 5b). In trials 161–320 and
later, however, the �TRðMpriorsÞ values were significantly greater for the long
prior than for the short prior (pscor ≤ 0.025, ts(7) ≥ 2.84, ds ≥ 1.00). A similar
profile was also evident in the μ̂prior values (Fig. 5c), indicating that parti-
cipants acquired a single generalised prior in the early trials and subse-
quently learned the two independent priors.

Figure 5d shows regression indices across participants. For the short
prior, the regression index did not differ significantly from zero in trials
1–160 (pcor = 0.13, Wilcoxon signed-rank test with Holm correction) but
did in trials 161–320 and 481–640 (pscor ≤ 0.039). In trials 321–480, the
index was greater than zero without the correction (p = 0.027) although the
difference did not reach significance with the correction (pcor = 0.055). The
indices for the long prior were significantly greater than zero (pscor ≤ 0.039),
and the difference between the long and short priors remained significant in
all trial bins (pscor ≤ 0.023). These results were generally consistent with
those of the �TRðMpriorsÞ values.

Experiment 3: timing using two body parts (right vs left hands)
Participants (n = 8) next performed the coincidence timing task selectively
using their right or left indexfingers according to the stimulus locations (i.e.,
priors) (Fig. 6).

In this instance, �TR ×TS curves divergedbetween the twopriors in both
trials 1–160 and 481–640 (Fig. 6a), and �TRðMpriorsÞ values across partici-
pants were significantly greater for the long prior than for the short prior in
all trial bins (pscor ≤ 0.026, ts(7) ≥ 2.33, ds ≥ 0.82, paired t-test with Holm
correction) (Fig. 6b). The μ̂prior values show similar profiles to the
�TRðMpriorsÞ values (Fig. 6c). These results suggest that the participants
concurrently learned the two independent priors from the early trials.

As shown in Fig. 6d, the regression index for the short prior exhibited
no significant difference from zero in trials 1–160 (pcor = 0.23, Wilcoxon
signed-rank test with Holm correction), although the indices were sig-
nificantly greater than zero in trials 161–320 and later (pscor ≤ 0.031). The
indices for the long prior were significantly greater than zero in all trial bins
(pscor = 0.031) and greater than those for the short prior in all trial bins
(pscor = 0.016).

Thus, the regression indices did not indicate central tendency for the
short prior in trials 1–160, although did for the long prior. This did not
support the concurrent learning of the two independent priors in the early
trials, which was not consistent with the results of the �TRðMpriorsÞ values.
Notably, the μ̂prior value for the short prior in trials 1–160 was 1158.1ms
(Supplementary Table 2), which was greater than the short prior
(424–988ms) and was included in the long prior (1129–1694 ms).
According to the Bayesian estimation model, �TR should be biased to
1158.1 ms. In this case, the regression index should be 0 (i.e., slope = 1),
which is computed from the �TR values as a function of TSwith substituting
1158.1 ms, 365.3ms (Supplementary Table 3), and 0.194 (Supplementary
Table 4) (or 1158.1 ms, 256.9 ms [Supplementary Table 5], and 0.136
[Supplementary Table 6]) into μprior, σprior, andw in Eq. 4, respectively. This
was consistentwith the experiment result. Thus, Bayesian estimation should
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Fig. 5 | Results of Experiment 2. Participants (n = 8) performed the coincidence
timing task selectively using the index or middle fingers according to the priors. �TR

values across participants as a function of TS for trials 1–160 and 481–640 (a).
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Fig. 4. †p < 0.05, *pcor < 0.05, **pcor < 0.01.
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not appear as the ‘central’ tendency when μ̂prior was largely biased towards
the other prior.

Experiment 4: timing using two body parts (contralateral hand
vs foot)
Participants (n = 8) performed the coincidence timing task selectively using
their right/left index finger or left/right heel according to the stimulus
locations (i.e., priors) (Fig. 7).

�TR × TS curves for the two priors diverged in both trials 1–160 and
481–640 (Fig. 7a). �TRðMpriorsÞ values were significantly greater for the long
prior than for the short prior over all trial bins (pscor ≤ 0.0026, ts(7) ≥ 3.99,
ds ≥ 1.41, paired t-test with Holm correction) (Fig. 7b). Although the nor-
mality for the residuals was not rejected for the �TRðMpriorsÞ values, it was
marginal (p = 0.077) in Experiment 4 (for details, see Analyses inMethods).
Therefore, we supplementarily conductedWilcoxon signed-rank tests with
Holm correction on the �TRðMpriorsÞ values, which also showed that the
�TRðMpriorsÞ values were significantly greater for the long prior than for the
short prior over all trial bins (pscor ≤ 0.021). The μ̂prior values show a similar
profile to the �TRðMpriorsÞ values (Fig. 7 c). The results indicate that the
participants learned the two independent priors from the early trials.

As shown in Fig. 7d, regression indices were significantly greater than
zero for the short and long priors in all trial bins (pscor ≤ 0.031, Wilcoxon
signed-rank test with Holm correction). The indices were greater for the
long prior than for the short prior in all trial bins (pscor = 0.016). The results
were consistent with those of the �TRðMpriorsÞ values.

Experiment 5: timing using two body parts (ipsilateral hand
vs foot)
Participants (n = 8) performed the coincidence timing task selectively using
their dominant index finger or the ipsilateral heel according to the stimulus
locations (i.e., priors) (Fig. 8). Tomaintain stimulus–response compatibility,
stimuli were presented above or below the fixation point. The participants

pressed a keywith their indexfingerwhen the stimuli were presented above,
and they pressed a foot key with their heel when the stimuli were pre-
sented below.

�TR × TS curves for the two priors diverged in both trials 1–160 and
481–640 (Fig. 8a), with �TRðMpriorsÞ values remaining significantly
greater for the long prior than for the short prior over all trial bins
(pscor ≤ 0.0035, ts(7) ≥ 3.94, ds ≥ 1.39, paired t-test with Holm correc-
tion) (Fig. 8b). The μ̂prior values showed a similar profile to the
�TRðMpriorsÞ values (Fig. 8c).

Regression indiceswere significantly greater than zero for the short and
long priors in all trial bins (pscor = 0.031, Wilcoxon signed-rank test with
Holm correction) (Fig. 8d). The indices were greater for the long prior than
for the short prior in all trial bins (pscor ≤ 0.016). The results were consistent
with those of the �TRðMpriorsÞ values.

These results indicate that participants could quickly learn two inde-
pendent priors when they were associated with body parts located on
separate limbs, even when the limbs did not span the right and left body
sides (as was the case in Experiment 4).

Comparisons across the experiments
In the results of each experiment, we tested whether participants con-
currently learned the short and long priors over time. To compare
�TRðMpriorsÞ values across experiments, we conducted a three-way analysis of
variance (ANOVA) with one between-participant factor (5 experiments)
and two within-participant factors (2 priors × 4 trial bins). Significant main
effects were found for prior (p < 0.001, F(1, 35) = 98.73, ηp

2 = 0.74) and trial
bin (p = 0.020, F(1.69, 59.17) = 4.50, ηp

2 = 0.11), although the main effect of
experiment was not significant (p = 0.98, F(4, 35) = 0.12, ηp

2 = 0.013). Sig-
nificant two-way interactions were found between experiment and prior
(p = 0.011, F(4, 35) = 3.83, ηp

2 = 0.30) and between prior and trial bin
(p < 0.001, F(3, 105) = 5.98, ηp

2 = 0.15). However, the interaction between
experiment and trial bin (p = 0.63, F(6.76, 59.17) = 0.74, ηp

2 = 0.078) and
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Fig. 6 | Results of Experiment 3. Participants (n = 8) performed the coincidence
timing task selectively using the right or left index finger according to the priors. �TR

values across participants as a function of TS for trials 1–160 and 481–640 (a).
�TRðMpriorsÞ values across participants for the short and long priors (b). μ̂prior values

inferred using the grand-averaged �TR values for the short and long priors (c).
Regression indices across participants for the short and long priors (d). The
representations of the markers, lines, boxes, and whiskers are the same as those in
Fig. 4. *pcor < 0.05, **pcor < 0.01.
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representations of the markers, lines, boxes, and whiskers are the same as those in
Fig. 4. *pcor < 0.05, **pcor < 0.01, ***pcor < .001.
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Fig. 8 | Results of Experiment 5. Participants (n = 8) performed the coincidence
timing task selectively using the ipsilateral hand or foot according to the priors. �TR

values across participants as a function of TS for trials 1–160 and 481–640 (a).
�TRðMpriorsÞ values across participants for the short and long priors (b). μ̂prior values

inferred using the grand-averaged �TR values for the short and long priors (c).
Regression indices across participants for the short and long priors (d). The
representations of the markers, lines, boxes, and whiskers are the same as those in
Fig. 4. *pcor < 0.05, **pcor < 0.01, ***pcor < 0.001.

https://doi.org/10.1038/s41539-024-00241-x Article

npj Science of Learning |            (2024) 9:34 6



that among the three factors (p = 0.33, F(12, 105) = 1.14, ηp
2 = .12) were not

significant.
The analyses of simple effects for the interaction between experiment

and prior revealed that the effect of prior was non-significant in Experiment
1 (p = 0.20,F(1, 7) = 1.98, ηp

2 = 0.22) butwas significant in Experiments 2–5
(ps ≤ 0.0095,Fs(1, 7) ≥ 12.50,ηp

2s ≥ 0.64). The results further supported that
a single generalised prior was learned in Experiment 1 (Fig. 4), whereas the
two independent priors were learned in Experiments 2–5 (Figs. 5–8).

The analyses of simple effects for the interactionbetweenprior and trial
bin revealed that the effect of trial bin was not significant for the long prior
(p = 0.46, F(2.16, 75.54) = 0.81, ηp

2 = 0.023), but it was significant for the
short prior (p = 0.0017, F(1.85, 64.74) = 7.35, ηp

2 = 0.17). Consistent with
the statistical results, �TRðMpriorsÞ and μ̂prior values for the long prior showed
little change among trial bins in all experiments, but those for the short prior
generally decreased over trials in Experiments 2–5. These results suggest
that, when the two independent priors were learned, the acquisition of the
long prior was completed in the early trials, whereas that of the short prior
was developed as the trials progressed.

Discussion
The current results supported ourhypothesis of body-part specificity.When
participants used only one body part for timing responses, they learned a
single prior by generalising over two prior distributions (Exp. 1). However,
whenparticipants selectively used twobodyparts, theyconcurrently learned
the two independent priors (Exp. 2–5). Moreover, the results revealed that
body-part specific learning of the priors wasmore quicky attained when the
priors were assigned to anatomically distant body parts (e.g., hand vs foot)
than when they were assigned to closer body parts (e.g., index vs middle
finger). Thus, body-part specific learning of the priors was regulated in a
somatotopic manner.

We hypothesised body-part specificity because the SMA, which was
proposed as a possible neural basis for motor specificity6, has
somatotopy10,11. The current results supported the hypothesis and exhibited
further consistency with the neurophysiological properties of the SMA. In
the SMA, there exist neurons that are activated specifically bymovement of
the contralateral hand10,18. The hand and leg movements are mapped in the
relatively rostral and caudal regions in the SMA, respectively11. Thus, the
body parts that are anatomically distant (or close) are also represented in the
anatomically distant (or close) regions in the SMA.Accordingly, we inferred
the following somatotopic organisation of body-part associated learning of
the priors: when the neural representations of the body parts in the SMAare
identical and close, the assignedpriors are generalised.However,when those
in the SMA are distant, the assigned priors are independently acquired.

In addition, the cerebellum and basal ganglia (BG) should be also
referred as the possible neural bases for body-part specificity. The cere-
bellum is involved in precise timing19 and has somatotopy20. The neural
circuit model of the cerebellum can learn and represent the prior distribu-
tion of time intervals21, and the outputs of the circuit replicate the psycho-
physical observations4,5. The BG is a core neural basis that encodes time
intervals and exhibits neuronal responses that reflect scalar variability13. The
BG also exhibits somatotopy22. Moreover, a neuroimaging study suggested
that BG represents prior uncertainty in a visuospatial decision-making
task23. Notably, the SMAhas neuronal connectivitywith the cerebellum and
BG24. Therefore, these possible neural bases are not always mutually
exclusive.The SMA, cerebellum, andBGmayconstitute aneuronal network
to generate Bayesian estimation that can learn multiple priors in timing.
However, the abovementioned discussion is merely speculative. Future
neuroimaging or neurophysiological experiments are necessary to identify
the actual neural bases of body-part specificity.

The body-part specificity found in the present study does not neces-
sarily imply that prior distributions are represented or implemented within
motor processing. Psychophysical17 and psychophysiological25 studies
indicated that the prior distribution affects the perceptual process during
timing tasks. There is growing evidence that motor responses or programs
affect various types of time perception26–30. Thus, it is also plausible that

motor responses affect the Bayesian learning of perceptual timing. Notably,
a meta-analysis of neuroimaging studies showed that the SMA was con-
sistently activated across various motor and perceptual timing tasks31. We
propose the SMAas one of the possible neural bases of body-part specificity.
If it is true, the present and previous results are consistent with each other.

We can also infer functional significance inmotor-perception coupling
in the Bayesian learning of timing. During sensorimotor tasks, the variety of
motor responses is generally greater when using multiple body parts than
when using only a single body part. It should be rational to increase the
variety of the perceptual strategy according to the increase in the variety of
the motor responses. Inversely, when the variety of the motor response is
limited, it would be reasonable for efficient utilisation of a finite perceptual
resource to narrow down variety in the perceptual strategy.

An unexpected feature of our results was that when participants
learned the two independent priors, they quickly completed the acquisition
of the long prior but needed more trials to learn the short prior. Similar
results were not found in Preliminary Experiment II (see Supplementary
Results and Supplementary Fig. 1c, d). Therefore, such preferential acqui-
sition of the long prior occurred when the short and long priors were
intermixed within a session. A similar effect was also found by ref. 6. When
participants eventually learned the two priors after excessive trials, it was
attained by shifting the μ̂prior for the short prior away from that for the
generalised prior (Fig. 4 in Roach et al.). Although the actualmechanism for
the preferential acquisition of the long prior is unclear at this stage, itmay be
related to sensory uncertainty. Due to scalar variability13,14, there is greater
sensory uncertainty in longer stimulus intervals. According to the Bayesian
estimation model, greater sensory uncertainty results in stronger depen-
dence of time estimation on the prior to compensate for the uncertainty.
Faster acquisition for the long prior may reflect a prioritisation of learning
towards higher sensory uncertainty contexts where additional prior
knowledge will be more impactful.

In the current study,we focused on themeans of the prior distributions
acquired in the brain (μ̂prior) to evaluate whether participants learned the
two independent priors. It remains unclear as to how participants learn the
variability (σprior) of the prior distributions. The σprior acquired in the brain
(σ̂prior) and Weber fraction (w) are unspecified by the fitted curves (cf.
Supplementary Tables 3–6). Therefore, we cannot directly discuss the σ̂prior
values. Meanwhile, the μ̂prior values linearly correlated with the �TRðMpriorsÞ
values across the experiments (Supplementary Fig. 2), on which the values
for the wide prior (Pre-Exp. I, purple crosses) were plotted with little
deviation. This suggests that there was little difference in the σ̂prior and w
values between Preliminary Experiment I and other experiments (for
details, see Eq. 5), although the wide prior had a greater σprior than the short
and long priors. It was suggested that the learning of μprior is attained by a
relatively smaller number of trials32, whereas that of σprior needs a greater
number of trials5. The participants might first acquire a generalised wide
σ̂prior and not be able to fully learn the two independent narrower σ̂prior
within 640 trials, even when they learned the μ̂prior of the two independent
priors. Previous studies also measured the w values by using time-interval
judgement tasks15,16. This methodology enables to directly evaluate both
μ̂prior and σ̂prior values in future studies.

Whether body-part specificity also operates in nontemporal tasks
remains unclear as well. Notably, as a ‘side effect’, the association between
the body parts and prior distributions was found in the judgement of visual
motion directions33, although the causal relationship between the motor
responses and priors was opposite to that in our tasks. In this study, parti-
cipants triggered the motion stimulus (upward/downward) by key pressing
of the right or left index finger. Then, they judged themotion direction. The
right and left keypresses were associated with either of two prior distribu-
tions (upward/downward). Consequently, their judgements were biased to
the means of the priors. The ecological validity of this effect was unclear,
since such a causality from motor responses to visual statistics is not easily
found in daily environments.However, thisfinding suggests that the brain is
capable of associating the body parts with priors in the nontemporal task. In
addition, in a spatial aiming task, dependency on a prior differed according
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to whether a typical reaching or atypical wrist-rotation setting was used34.
Based on the result, the authors proposed that a single prior could be learned
differently across different effectors (finger/wrist). This mechanism may
also enable to learn multiple priors in the spatial task.

Moreover, it will be instructive to investigate daily human behaviours
such as sports35–38. Skilful baseball or cricket players may utilise body-part
specificity. For example, to improve the hit rates, a batter may beat time
using a footwhen a fastball is pitched (i.e., short prior),whereas using ahand
when a slowball is pitched (i.e., long prior). In addition, future studies on
people with autism can further the current findings. Previous studies
demonstrated that individuals with autism or high autistic traits have a
disability in learning or utilising the prior distribution in timeprocessing16,39.
People with autismmay also exhibit their specific behaviour in the learning
or utilisation of themultiple prior distributions. Our findingwould enhance
the application of the Bayesian approach to our daily behaviour.

Methods
Participants
Forty healthy individuals participated in Experiments 1–5. In addition, 16
healthy individuals participated in Preliminary Experiments I and II (see
Supplementary Methods). Eight individuals participated in one of seven
experiments (for the profiles of participants in each experiment, see Sup-
plementary Table 1). There was no overlap of participants among the
experiments to avoid a possible effect of the priors learned in the previous
experiment. All participants were naïve to the purpose of the experiments.

This study was approved by the Ethics Committee of Shizuoka Uni-
versity (15–19). All experiments were performed in accordance with the
approved guidelines and regulations. All participants provided written
informed consent.

Stimuli
In a dimly lit sound-shielded room, each participant placed their head on a
chin rest and sat at thedistanceof 87 cmfromthemonitor (SonyGDM-F520,
Japan; 85Hz). Presentation software (Neurobehavioral Systems, USA) was
used for generating the stimuli and recording responses of the participants.

Three sequential stimuli (S1→ S2→ S3) were presented on the right
or left side of the fixation point (Fig. 1a) in Experiments 1–4 or the upper or
lower side in Experiment 5. The duration of each stimulus was 106ms. The
diameter of the frame circles in which stimuli (green emission) appeared
was1.1° in visual angle, and thedistancebetween the centre of the twocircles
was 2.2°. The stimulus time interval (TS) between S1 and S2 and that
between S2 and S3 were identical within a trial.

For each trial, TS was randomly sampled from either of two discrete
uniformprior distributions (Fig. 1b): the short prior (424, 565, 706, 847, and
988ms; μprior = 706ms) or the long prior (1129, 1271, 1412, 1553, and 1694
ms;μprior = 1412ms). The short and longpriorswere assigned to the right or
left stimuli (Fig. 1c) in Experiments 1–4 or the upper or lower stimuli in
Experiment 5. The combinations between the priors (short/long) and sti-
mulus locations (right/left or upper/lower) were counterbalanced among
participants in each experiment. The trial-by-trial order of the priors (i.e.,
stimulus locations) was randomly determined with the restriction that TS
was not repetitively sampled from the same prior for more than four trials.

Task
Based on TS from S1 to S2, participants attempted to press a key to coincide
with the onset of S3 (coincidence timing task). In this task, there was no
additional signal to feedback the accuracy of the response timing to the
participants. Participantswere instructednot tomove their gaze but tofixate
the fixation point during the task. For each trial, the time interval from the
onset of S2 to that of themotor response wasmeasured as the response time
interval (TR) (Fig. 1a). The key pressing was conducted using the dominant
indexfinger only (Exp. 1), dominant index ormiddlefinger (Exp. 2), right or
left index finger (Exp. 3), right/left index finger or left/right heel (Exp. 4), or
dominant index finger or ipsilateral heel (Exp. 5). In Experiments 2–5, the
two body parts that responded were assigned to the compatible stimulus

locations (e.g., responding by the right [left] hand to the right [left] stimuli).
According to the combinations between the priors and stimulus locations,
those between the priors and body parts were counterbalanced among
participants in Experiments 2–5. A single key was used in Experiment 1.
Two keys were used in Experiments 2–5. The horizontal distance between
the centres of the right and left keys was 1.9 cm in Experiment 2, 11.5 cm in
Experiment 3, and that between the contralateral hand and foot keys was
11.5 cm in Experiment 4. The centres of the hand and foot keys were
approximately placed at the same horizontal position in Experiment 5.

Procedure
Each participant completed 640 trials (40 trials/session × 16 sessions) of the
task.The interval fromtheonset of S3 in a trial to that of S1 in the subsequent
trial was 3.1 s. A short beep (0.2 s) was presented 1 s before S1 to alert
participants to the beginning of the trial. Participants took a 1-min break
after each session and a 5-min break per 4 sessions. When participants
reported fatigue or drowsiness, the break was extended.

Theoretical predictions
According to the Bayesian estimation theory1,2, the brain integrates the
sensory input of a target (Xsensed) and the prior distribution about the target
to obtain the optimal estimate of the target (Xestimated), as follows:

Xestimated ¼
σ2prior

σ2prior þ σ2sensed
Xsensed þ

σ2sensed
σ2prior þ σ2sensed

μprior ð1Þ

where σsensed denotes the standarddeviation ofXsensed (i.e., degree of sensory
variability). μprior and σprior denote the mean and standard deviation of the
prior distribution, respectively.

Assuming that there is nobias at the stages of sensory inputs andmotor
outputs in the coincidence timing task, Xsensed can be approximated by TS,
and the mean among trials of Xestimated can be approximated by that of TR
(�TRÞ. Accordingly, �TR can be expressed as a linear function of TS as follows:

�TR ¼
σ2prior

σ2prior þ σ2sensed
TS þ

σ2sensed
σ2prior þ σ2sensed

μprior ð2Þ

where we assumed the prior distribution as a Gaussian distribution,
although the uniform distributions were used for the priors, based on pre-

vious studies6,15–17,40. In Eq. 2,
σ2prior

σ2priorþσ2sensed
represents the slope of �TR againstTS,

and
σ2sensed

σ2priorþσ2sensed
μprior represents the intercept. When participants learned a

prior distribution, the slope should be smaller than 1 (‘central tendency’).
The central tendency reflects that the estimate ofTS is biased to μprior, due to
Bayesian estimation. The greater central tendencies appear as the smaller
slopes.

In addition, according to scalar variability13,14, σsensed should be scaled
per TS as follows:

σsensed ¼ wTS ð3Þ

where w denotes the Weber fraction. Then, Eq. 2 can be transformed as

�TR ¼
σ2prior

σ2prior þ w2TS
2 TS þ

w2TS
2

σ2prior þ w2TS
2 μprior ð4Þ

Equation 4 predicts that the �TR ×TS functions exhibit nonlinear profile
with a gentler gradient in the longer TS (Fig. 2a, b).

Figure 2a shows the prediction when participants learned a single
generalised prior. Figure 2b shows the prediction when participants con-
currently learned the short and long priors. As shown in Fig. 2c, d, these
predictions were supported by the results of Preliminary Experiments I and
II (for details, see Supplementary Methods, Supplementary Results, and
Supplementary Fig. 1).
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Analyses
WemeasuredTR in each trial (Fig. 1a).We excluded trials containing any of
the following responses from analyses: no key pressing, pressing the
opposite key, pressing the key twice or more. The rates of the excluded
responses were 0.38% over all experiments (Exp. 1: 0.08%, Exp. 2: 0.45%,
Exp. 3: 0.51%, Exp. 4: 0.72%, Exp. 5: 0.64%, Pre-Exp. I: 0.08%, Pre-Exp. II:
0.18%). We sorted the TR values for each TS every 160 trials (80 trials per
prior) to calculate the �TR values for each prior. Then, we fitted the �TR values
as a function of TS by Eq. 4 using the least squares method (Matlab R2022b
with the Optimisation Toolbox).

As shown in Fig. 3a, we calculated �TR atTS = 1059ms (i.e., grandmean
of the short and long priors,Μpriors) on the fitted curves [�TRðMpriorsÞ]. The
�TRðMpriorsÞ values should have no difference between the short and long
priors if participants learned a single prior by generalising over the two
distributions. Meanwhile, the �TRðMpriorsÞ values should be greater for the
long prior than for the short prior if participants concurrently learned the
two independent priors.

We calculated the �TRðMpriorsÞ values for each prior per trial bin in each
participant. The normality of the residuals of the �TRðMpriorsÞ values was not
rejected over Experiments 1–5 (p = 0.15, Shapiro–Wilk normality test) and
in each experiment (Exp. 1: p = 0.50, Exp. 2: p = 0.35, Exp. 3: p = 0.73, Exp. 4:
p = 0.077, Exp. 5: p = 0.54). We tested whether the �TRðMpriorsÞ values were
greater for the long prior than for the short prior in each experiment, using
one-tailed paired t-tests corrected by the Holmmethod (corrected p-values
[pcor] are shown). We used Cohen’s d41 for the size effect index of the t-test.
Regarding Experiment 4, the p-value for the normality test was greater than
0.05 but less than 0.1. Therefore, we supplementarily conducted one-tailed
Wilcoxon signed-rank tests on the �TRðMpriorsÞ values in Experiment 4 for
strict evaluation.

Moreover, for the comparisons across the experiments,we conducted a
three-way ANOVA with one between-participant factor (experiment) and
two within-participant factors (prior, trial bin) on the �TRðMpriorsÞ values. In
theANOVA, the equality of variance for trial binwas rejected byMendoza’s
multisample sphericity test (p < 0.001); therefore, we adjusted the relevant
degrees of freedom using Greenhouse–Geisser’s ε. We used ηp

2 for the size
effect index of the ANOVA. The ANOVA and subsequent analyses were
carriedoutusingRversion4.2.2 and theR function ‘anovakun’version4.8.7.

In theory, the mean of the acquired prior (μ̂prior) can be inferred from
the point that the �TR × TS curve intersects the unity line (i.e., the point of
�TR = TS) (Fig. 3b). Substituting �TR intoTS (orTS into �TR), Eq. 4 derives �TR =
μprior (or TS = μprior). The μprior estimated from the participant’s responses
should reflect the μ̂prior. However, the estimation of the intersection is highly
sensitive to idiosyncratic responses (e.g., overshoots, undershoots, steeper
slopes than unity), leading to implausible μ̂prior values (e.g., <0ms,
>2000ms) being obtained in 14.4%of the curvefittings. Therefore, we could
not use the μ̂prior values for the statistical tests.

Instead, we calculated the μ̂prior values using the grand-averaged �TR
values (mean across participants). There was no implausible value when
inferring μ̂prior using the curves fitted to the grand-averaged �TR values
because idiosyncratic responses for each participant were cancelled by
averaging across participants. The μ̂prior values linearly correlated with the
�TRðMpriorsÞ values across participants among the experiments, priors, and
trial bins (R2 = 0.91) (see Supplementary Fig. 2). Thus, the �TRðMpriorsÞ values
across participants can be used for explaining the μ̂prior values.

In theory, μ̂prior can be expressed as a function of �TRðMpriorsÞ as follows:

μ̂prior ¼
w2½1059ms�2þσ2prior

w2½1059ms�2
�TR Mpriors

� �
�

σ2prior
w2½1059ms� ð5Þ

which can be obtained by resolving Eq. 4 after substituting 1059ms and
�TRðMpriorsÞ into TS and �TR, respectively. Assuming that σprior and w are
constant, Eq. 5 is a linear function of �TRðMpriorsÞ. The significant corre-
lation between the μ̂prior and �TRðMpriorsÞ values (Supplementary Fig. 2)
might imply that there was no difference in the σprior andw values among
the experiments, priors, and trial bins. Alternatively, although theremight

be a difference in σprior or w among them, the effects would be relatively
too small to affect the linear correlation between the μ̂prior and �TRðMpriorsÞ
values.

In addition, we also evaluated the degree of the central tendency for the
short and long priors in Experiments 1–5 and Preliminary Experiment II
using the regression index15,16, whichwas calculated by subtracting the slope
of the regression line of �TR against TS from one (1 – slope). As shown in the
results of Preliminary Experiment I (Fig. 2c), the �TR ×TS function should be
essentially modelled by the nonlinear function as Eq. 4 in the current
experiments. However, the linear slope has been widely used for evaluating
the central tendency in previous studies, which were well fitted with the
results5,15–17. There should be no practical problem in approximating the �TR
× TS function using the linear function as in Eq. 2 when calculating within
short ranges of TS as done in previous studies (e.g., max – min ≈ 0.5 s).
Actually, the Akaike information criterion (AIC)42 values were smaller (i.e.,
indicating fittingswere better) when using Eq. 4 for fittings thanwhen using
Eq. 2 in Preliminary Experiment I (for details, see Analyses in Supple-
mentary Methods). Meanwhile, the AIC values were not significantly dif-
ferent between when using Eq. 4 and when using Eq. 2 in Preliminary
Experiment II.

If participants concurrently learned the two independent priors, the
regression indices should be greater than zero for both short and long
priors. In addition, assuming the effect of scalar variability across the
priors (i.e., σsensed was constant within each prior but was greater in the
long prior than in the short prior), the regression index should be greater
for the long prior than for short prior. We tested them per 160 trials (80
trials/prior) in each experiment. Notably, the criterion of the regression
index >0 is not always a necessary condition to verify that participants
learned the priorwhen μ̂prior is largely biased to the other prior (seeResults
of Experiment 3).

The normality for the residuals of the regression indices over Experi-
ments 1–5 was rejected (p = 0.0084, Shapiro–Wilk normality test). In each
experiment, the normality for the residuals was rejected in Experiments 2
(p = 0.0023) and 3 (p = 0.013), marginally not rejected in Experiments 1
(p = 0.086) and 4 (p = 0.054), and not rejected in Experiment 5 (p = 0.38).
Although the normality was partially not rejected, we conducted one-tailed
Wilcoxon signed-rank tests using the exact method on the regression
indices in all experiments for strict and consistent statistical evaluations of
the indices over the experiments.We calculated the p-values using the exact
method because the sample size was not large in each experiment (n = 8).
The exact method does not compute z-statistics. Accordingly, we could not
compute Pearson’s r (= z/

ffiffiffi
n

p
) as the size effect index and showed only p-

values in the Wilcoxon signed-rank tests. The p-values were corrected in
each experiment using the Holm method. The Wilcoxon signed-rank tests
were carried out using Matlab R2022b with the Statistics and Machine
Learning Toolbox.

It may be also notable that there was no trial-to-trail sequential cor-
relation in timing errors (TR–TS) of the current coincidence timing task (for
details, see Supplementary Results and Supplementary Tables 7–9). In
contrast, sequential correlations were found in timing errors of rhythm
tapping tasks43, which was interpreted as a reflection of a sort of memory
process from prior responses to subsequent ones44. Thus, such a response
memory effect did not affect the current results.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The datasets generated and/or analysed during the current study are
available upon request by contacting the corresponding author (M.M.).

Code availability
The underlying codes for this study are available upon request by contacting
the corresponding author (M.M.).
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